

Maratha Vidya Prasarak Samaj's

COMMERCE MANAGEMENT & COMPUTER SCIENCE (CMCS) COLLEGE,

Gangapur Road, Nashik-13

Programme Outcome, Programme Specific Outcome and Course Outcome

CBCS 2019 Pattern

B.Sc. (Regular)

B.Sc. (Mathematics)

Sr No	Programme Outcomes
PO1	Scientific temper will be developed in Students.
PO2	Students will acquire basic Practical skills & Technical knowledge
	along with domain knowledge of different subjects in the science
	stream.
PO3	Students will become employable; they will be eligible for career
	opportunities in Industry, or will be able to opt for entrepreneurship.
PO4	Students will possess basic subject knowledge required for higher
	studies, professional and applied courses like Management Studies,
	Law etc.

Sr No	Programme Specific Outcomes
PSO1	Think in a critical manner.
PSO2	Know when there is a need for information, to be able to identify,
	locate, evaluate, and effectively use that information for the issue or
	problem at hand.
PSO3	Formulate and develop mathematical arguments in a logical manner.

PSO4	Acquire good knowledge and understanding in advanced areas of
	mathematics and statistics, chosen by the student from the given
	courses.
PSO5	Understand, formulate and use quantitative models arising in social
	science, business and other contexts.

Subject	Course Outcomes (F.Y.B.Sc)
Algebra	CO1 The mathematical maturity of students in their current
	and future courses shall develop.
	CO2 The student develops theoretical, applied and
	computational skills.
	CO3 The student gains confidence in proving theorems and
	solving problems.
Calculus - I	CO1 Give the students a sufficient knowledge of fundamental
	principles, methods and a clear perception of in numerous
	power of mathematical ideas.
	CO2 Students will be able to identify areas in mathematics and
	other fields where Calculus is useful.
	CO3 Students will be able to write detailed solutions using
	appropriate mathematical language.
Analytical	CO1 Recognize the system of linear equations, identify the
Geometry	existence of solutions and if there are solutions, solve
	equations.
	CO2 Define the system of linear equations. Define the system
	of linear equations by using matrices.
	CO3 Investigate the existence of solutions using rank of the
	extended matrix and matrix of coefficients.
Calculus - II	CO1 A student should get a relational understanding of
	mathematical concepts.
	CO2 Concerned structures, and should be able to follow the
	patterns involved, mathematical reasoning.

Mathematics	CO1 To visualise algebraic and
Practical 1	analytical results geometrically.
& 2	CO2 To design practical demonstrations of mathematical
	results/formulae or the concepts.
	CO3 To exhibit relatedness of mathematics with day to day
	life problems.
	CO4 To explain visually some abstract concepts by using
	three dimensional models.

Subject	Course Outcomes (S.Y.B.Sc)
Calculus of	CO1 To enable students to use basic tools of analysis related
Several	to functions of several variables.
Variables	CO2 To explain the concept/theory in multivariate functions,
	partial differentiation and multiple integration.
	CO3 To illustrate the basic applications of multivariate
	calculus.
Numerical	CO1 Apply numerical methods to obtain approximate
Methods	solutions to mathematical problems.
and it's	CO2 Derive numerical methods for various mathematical
Application s	operations and tasks, such as interpolation, differentiation,
3	integration, the solution of linear and nonlinear equations, and
	the solution of differential equations.
	CO3 Analyse and evaluate the accuracy of common numerical
	methods.
Linear	CO1 To solve systems of linear equations using multiple
Algebra	methods, including Gaussian elimination and matrix inversion
	CO2 Demonstrate understanding of the concepts of vector
	space and subspace.
	CO3 Demonstrate understanding of linear independence, span,
	and basis
	Apply principles of matrix algebra to linear transformations.
Dynamical	CO1 To introduce students to the basic mathematical skills for
Systems	the qualitative solving of low dimensional systems of ordinary
	differential equations in continuous time, including
	dimensionless forms, phase portraits, and bifurcations
	CO3 To provide a brief introduction to the way ordinary
	differential equations can be used to model, explain and
	interpret real world problems.
	CO3 To provide a brief introduction to the theory and

	concepts that underpin the field of dynamical systems
Mathematic	CO1 To visualise algebraic and analytical results
S I	geometrically.
Practical	CO2 To design practical demonstrations of mathematical
Sem 3 & Sem 4	results/formulae or the concepts.
	CO3 To exhibit relatedness of mathematics with day to day
	life problems. CO4 To explain visually some abstract concepts
	by using three dimensional models.
	CO5 To Solve the mathematical problems by using maxima
	software.

B.Sc. (Chemistry)

S.R.	Programme Outcomes
PO1	Demonstrate, solve and an understanding of major concepts in all
	disciplines of chemistry.
PO2	Solve the problem and also think methodically, independently and
	draw a logical conclusion.
PO3	Employ critical thinking and the scientific knowledge to design, carry
	out, record and analyse the results of chemical reactions.
PO4	Create an awareness of the impact of chemistry on the environment,
	society, and development outside the scientific community.
PO5	Find out the green route for chemical reaction for sustainable
	development.

S.R.	Programme Specific Outcomes
PSO1	Gain the knowledge of Chemistry through theory and practical's.
PSO2	To explain nomenclature, stereochemistry, structures, reactivity, and
	mechanism of the chemical reactions.
PSO3	Identify chemical formulae and solve numerical problems.
PSO4	Use modern chemical tools, Models, Chem-draw, Charts and
	Equipment.
PSO5	Know structure-activity relationship.
PSO6	Understand good laboratory practices and safety.
PSO7	Develop research oriented skills.
PSO8	Make aware and handle the sophisticated instruments/equipment.

Subject	Course Outcomes (F.Y.B.Sc)
Physical	CO1 Students will be able to apply thermodynamic principles
Chemistry	to physical and chemical process.
	CO2 Calculations of enthalpy, Bond energy, Bond dissociation
	energy, resonance energy.
	CO3 Variation of enthalpy with temperature –Kirchoff's
	equation.
	CO4 Third law of thermodynamic and its applications.
	CO5 Relation between Free energy and equilibrium and factors affecting on equilibrium constant.
	CO6 Gas equilibrium, equilibrium constant and molecular
	interpretation of equilibrium constant.
	CO7 Concept to ionization process occurred in acids, bases and
	pH scale.
	CO8 Related concepts such as Common ion effect hydrolysis
	constant, ionic product, solubility product.
Organic	CO1 The students are expected to understand the fundamentals,
Chemistry	principles, and recent developments in the subject area.
	CO2 It is expected to inspire and boost interest of the students
	towards chemistry as the main subject.
	CO3 To familiarize with current and recent developments in
	Chemistry.
	CO4 To create foundation for research and development in
	Chemistry.
Inorganic	CO1 Various theories and principles applied to revel atomic
Chemistry	structure.
	CO2 Origin of quantum mechanics and its need to understand
	structure of hydrogen atom.
	CO3 Application of non-bonded lone pairs in shape of
	molecule.
	CO4 Explain rules for filling electrons in various orbitals-
	Aufbau's principle, Pauli exclusion principle, Hund's rule of
	maximum multiplicity.
Analytical	CO1 Calculations of mole, molar concentrations and various
Chemistry	units of concentrations which will be helpful for preparation of
	solution.

	CO2 Relation between molecular formula and empirical
	formula.
	CO3 Basics of chromatography and types of chromatography.
	CO4 Compare qualitative and quantitative analyses.
Chemistry	CO1 Determination of physical constant: Melting point,
Practical	Boiling point.
1&2	CO2 drawing organic molecule and arrow pushing concepts.
	CO3 Strength of Acid and Base.
	CO4 Common names and IUPAC nomenclature system of
	chemicals.
	CO5 Name oh Alkane, Alkanes, Alkenes and Alkynes.
	CO6 Preparation methods of Alkane, Alkanes and Alkynes
	including Hydrocarbons.
	CO7 Application of Hackle's rule of organic compounds to
	find the compounds are aromatic/ non aromatic.

B.Sc. (Botany)

S.R.	Programme Outcomes
PO1	Students know about different types of lower & higher plants their
	evolution in from algae to angiosperm &also their economic and
	ecological importance.
PO2	Cell biology gives knowledge about cell organelles & their functions.
PO3	Molecular biology gives knowledge about chemical properties of
	nucleic acid and their role in living systems.
PO4	They knows economic importance of various plant products &
	artificial methods of plant propagation.
PO5	Use modern Botanical techniques and decent equipment.
PO6	To inculcates the scientific temperament in the students and outside
	the scientific community.

S.R.	Programme Specific Outcomes
PSO1	Students acquire fundamental Botanical knowledge through theory
	and practical's.
PSO2	To explain basis plant of life, reproduction and their survival in
	nature.
PSO3	Helped to understand role of living and fossil plants in our life.
PSO4	Understand good laboratory practices and safety.
PSO5	To create awareness about cultivation, conservation and sustainable
	utilization of biodiversity.
PSO6	Students able to start nursery, mushroom cultivation, bio fertilizer
	production, fruit preservation and horticultural practices.
PSO7	To create awareness about cultivation, conservation and sustainable
	utilization of biodiversity.

Subject	Course Outcomes (F.Y.B.Sc)
Plant Life	CO1 Basic idea regarding lower and higher cryptogams.
And	CO2 Introduction to higher plants i.e. phanerogams (
Utilization I	Gymnosperms and Angiosperms)
	CO3 To study different classification systems to classify
	Kingdom Plantae.
	CO4 Utilization of algae, fungi, lichens and bryophytes in
	different sectors.
Plant	CO1 Basic terminology in plant morphology.
Morphology	CO2 Descriptive and interpretative morphology of plants.
and	CO3 Complete study of reproductive parts such as
Anatomy	inflorescence, flower and fruit.
	CO4 Introduction to plant anatomy including types of tissues
	and their organization in plants.
Plant Life	CO1 Introduction to vascular plants including pteridophytes,
And	gymnosperms and angiosperms.
Utilization	CO2 Study of above groups with their representative member
Π	in detail.
	CO3 Introduction to Angiosperms classification.
	CO4 Utilization and economic importance of pteridophytes,
	gymnosperms and angiosperms in different sectors.
Principles	CO1 Introduction to Plant Physiology and Cell Biology.
of Plant	CO2 Study of different physiological processes such as
Science	Diffusion, Osmosis, Plasmolysis and Plant growth.
	CO3 Ultrastructure studies of cell and chloroplast.
	CO4 Study of cell cycle in plants with detailed study of mitosis
	and meiosis.
	CO5 Introduction and scope of molecular biology, central
	dogma of molecular biology.
	CO6 Study of DNA and RNA in detail.
	CO7 DNA Replication with its types.

Botany	CO1 Study of plant life cycles including Algae, Fungi and
Practical	Bryophytes.
Based on	CO2 Exposure to f Mushroom Cultivation.
1&2	CO3 Introducing basic terms and concepts related to
	Angiosperms Taxonomy.
	CO4 Study of plant life cycles including Pteridophytes and
	gymnosperms.
	CO5 Introducing basic terms and concepts related cell biology
	such as mitosis and meiosis.
	CO6 Practical studies of plant processes in Plant Physiology.

B.Sc. (Physics)

S.R.	Programme Outcomes
PO1	Demonstrate, solve and an understanding of major concepts in all
	disciplines of physics.
PO2	Solve the problem and also think methodically, independently and
	draw a logical conclusion.
PO3	Employ critical thinking and the scientific knowledge to design, carry
	out, record and analyse the results of Physics experiments.
PO4	Create an awareness of the impact of Physics on the society, and
	development outside the scientific community.
PO5	To inculcate the scientific temperament in the students and outside
	the scientific community.

S.R.	Programme Specific Outcomes
PSO1	Gain the knowledge of Physics through theory and practical's.
PSO2	Understand good laboratory practices and safety.
PSO3	Develop research oriented skills.
PSO4	Make aware and handle the sophisticated instruments/equipment.

Subject	Course Outcomes (F.Y.B.Sc)
Mechanics and	CO1 To understand the basic terms related to motion.
Properties of	CO2 Introducing Newton's laws of motion.
Matter	CO3 Studying different kinds of energy.
	CO4 Concept of Fluid Mechanics in physics.
	CO5 To study various Properties of Matter.
Physics	CO1 To understand the general structure of atom,
Principles and	spectrum of hydrogen atom.
Applications	CO2 To understand the atomic excitation and LASER
	principles.
	CO3 To understand the bonding mechanism and its
	different types
	CO4 To demonstrate an understanding of electromagnetic
	waves and its spectrum.

	CO5 Understand the types and sources of electromagnetic waves and applications. CO6 To demonstrate quantitative problem solving skills in all the topics covered.
Heat and Thermodynamics	CO1 To study basic concepts related to Fundamentals of Thermodynamics
	CO2 To understand Applied Thermodynamics.
	CO3 To study Heat Transfer Mechanisms indetail.
	CO4 To study different concepts related to Thermometry.
Electricity and	CO1 To understand the concept of the electric force,
Magnetism	electric field and electric potential for stationary charges.
	CO2 Able to calculate electrostatic field and potential of
	charge distributions using Coulomb's law and Gauss's law.
	CO3 To understand the dielectric phenomenon and effect
	of electric field on dielectric
	CO4 To Study magnetic field for steady currents using
	Biot-Savart and Ampere's Circuital laws
	CO5 To study magnetic materials and its properties
	CO6 Demonstrate quantitative problem solving skills in all the topics covered.
Physics Practical	CO1 Study and use of various measuring Instruments like
1&2	Vernier calliper, Micrometer Screw Gauge, Travelling Microscope.
	CO2 Practical studies of different motions.
	CO3 Study of surface tension by Jaeger's method.
	CO4 Study of Spectrometer and determination of angle of
	prism.
	CO5 Study of divergence of LASER beam.
	CO6 Determination of Plank's constant and its practical
	uses.
	CO7 Study of temperature coefficient of Thermistor.
	CO8 Study of temperature related properties and its application.

 CO9 Study of various circuit types such as f LR circuit, LCR circuit etc. CO10 To understand Diode characteristics. CO11 Comparison of capacitor using DeSauty's method.

B.Sc. (Zoology)

S.R.	Programme Outcomes
PO1	Demonstrate, solve and an understanding of major concepts in all
	disciplines of Zoology.
PO2	Solve the problem and also think methodically, independently and
	draw a logical conclusion.
PO3	Understand the evolution, history of phylum.
PO4	Create an awareness of the impact of Zoology on the environment,
	society, and development outside the scientific community.
PO5	Use modern techniques, decent equipment and Zoology software's.
PO6	To inculcate the scientific temperament in the students and outside
	the scientific community.

S.R.	Programme Specific Outcomes
PSO1	Gain the knowledge of Zoology through theory and practical's.
PSO2	Study and understand the DNA Recombinant technology.
PSO3	Understand good laboratory practices and safety.
PSO4	Develop research oriented skills.

Subject	Course Outcomes (F.Y.B.Sc)
Animal	CO1 To understand the Animal diversity around us.
Diversity I	CO2 To understand the underlying principles of classification
	of animals.
	CO3 To understand the terminology needed in classification.
	CO4 To understand the differences and similarities in the
	various aspects of classification.
	CO5 To classify invertebrates and to be able to understand the
	possible group of the invertebrate observed in nature.
	CO6 To understand our role as a caretaker and promoter of life.

Animal	CO1 To understand impact on ecosystem and biosphere due to
Ecology	the dynamics in population.
	CO2 To understand anticipate, analyse and evaluate natural
	resource issues and act on a lifestyle that conserves nature.
	CO3 To understand diversity of ecosystems and applies beyond
	the syllabi to understand the local lifestyle and problems of the
	community.
	CO4 To study food chains, food webs and link it with human
	life for its betterment and for non-exploitation of the biotic and abiotic.
	CO5 The working in nature to save environment will help
	development of leadership skills to promote betterment of
	environment.
Animal	CO1 The student will be able to understand classify and
Diversity II	identify the diversity of animals.
	CO2 The student understands the importance of classification
	of animals and classifies them effectively using the six levels of
	classification.
	CO3 To understand role in nature as a protector, preserver and
	promoter of life which he has achieved by learning, observing and understanding life.
Cell	CO1 The learner will understand the importance of cell as a
biology	structural and functional unit of life.
	CO2 The learner understands and compares between the
	prokaryotic and eukaryotic system and extrapolates the life to
	the aspect of development.
	CO3 The dynamism of bio membranes indicates the dynamism
	of life. Its working mechanism and precision are responsible for
	our performance in life.
	CO4 The cellular mechanisms and its functioning depends on
	endo-membranes and structures. They are best studied with
	microscopy.

Zoology	CO1 To study different phylum in kingdom Animalia.
Practical	CO2 Study of permanent slides in zoology.
1&2	CO3. Estimation of Dissolved oxygen from water sample.
	CO4 Determination of density, frequency and abundance of
	species by quadrat method.
	CO5 Study of microscopic fauna of freshwater ecosystem.
	CO6. Study of Eutrophication in lake/river.
	CO7 To study Economic importance of honey bees, Lac insects
	silk worms, red cotton bug, Anopheles mosquito
	CO8 .Study of Microscope for microscopic visualization.
	CO9 Study of animal cell in detail.
	CO10 Preparation of blood smears to observe the blood cells.

~	
Subject	Course Outcomes (S.Y.B.Sc)
Animal	CO1_ The students will be able to understand, classify and
Diversity_I	identify the diversity of higher vertebrates.
II & IV	CO2 _ The students will able to understand the complexity of
	higher vertebrates
	CO3 _ The students will be able to understand different life
	functions of higher vertebrates.
	CO4_ The students will be able to understand the linkage
	among different groups of higher vertebrates.
	CO5_ The student will become aware regarding his role and
	responsibility towards nature as a protector, to understand his
	role as a trustee and conservator of life which he has achieved
	by learning, observing and understanding life.
Applied	CO1_ The learner understands the basics about beekeeping
Zoology_I	tools, equipment, and managing beehives.
& II	CO2_ The learner understands the basic information about
	fishery, cultural and harvesting methods of fishes and fish
	preservation techniques.
	CO3_ The learner understands the biology, varieties of
	silkworms and the basic techniques of silk production.
	CO4_ The learner understands the types of agricultural pests,
	Major insect pests of agricultural importance and Pest control
	practices.

Subject	Course Outcomes (T.Y.B.Sc)
Pest	CO1_Define pest management.
Managem	CO2_Describe the economic, ecological, and sociological benefits
ent	of IPM. CO3_ Distinguish positive and negative impacts of
	pesticide use.
	CO4_ Understand problems resulting from misuse, overuse, and
	abuse of chemical pesticides.
	CO5_ Define and describe pesticide resistance and how it
	develops. CO6_Identify ecological and biological characteristics
	important in development of pest populations.
	CO7_ Identify 10 tactics commonly used in IPM and be able to
	distinguish them.
	CO8_Understand society's role in IPM decisions.
	CO9_ Describe different groups of pests and compare them to
	weeds and plant pathogens.
	CO10_Analyse and compare management tactics to determine the
	best approach to reducing pest populations, weeds, and disease
	presence. CO11_Locate appropriate, scientifically valid sources
	of information on specific tactics to manage insect pests, weeds,
	and diseases.
	CO12_Know and how to develop an IPM program.
Histology	CO1_The students will be able to understand, classify and
	identify the different types of tissue.
	CO2_The students will understand the complexity of various
	tissues in an organ.
	CO3_The students will be able to learn structure & functions of
	various tissues.
	CO4_ The students will understand the various diseases related to
	organs. CO4_The student will be able to know the role of glands
	in mammals.
Biological	CO1_Learners shall be able to understand basic concepts and
Chemistry	significance of biochemistry
	CO2_ The students will learn about the pH and Buffers.
	CO3_The students will learn about the chemical structures of
	carbohydrate, and their biological and clinical significance.
	CO4_The students will be able to understand, interpret structure
	and importance of proteins, carbohydrates and lipids.
	CO5_Learners will be able to comprehend variations in enzyme
	activity and kinetics.
Genetics	CO1_Students will be taught Mendelian genetics, their principles

	and anno internation
	and gene interaction.
	CO2_They learn about chromosomal aberrations and structure of
	chromosomes
	CO3_The student will gain a basic understanding on human
	genetics and hereditary.
Developm	CO1_Identify model organisms used to investigate developmental
ental	biology and compare the developmental programmers of different
Biology	organisms.
	CO2_Describe genetic, molecular and cellular techniques,
	including genome editing, used to investigate developmental and
	cell biology processes in various organisms.
Parasitolo	CO1_Identify, describe and contrast unicellular parasites and
gy	parasitic worms.
	CO2_Describe specific human and non-human parasitic diseases.
	CO3_Parasitology is the study of the interaction between parasites
	and their hosts.
	CO4_Prepare and observe live parasitic specimens and test
	students' own seropositivity for a particular parasitic infection
	CO5_Report on observations of biological specimens such as
	parasites

B.Sc. (Statistics)

S.R.	Programme Outcomes
PO1	Recall and explain acquired scientific knowledge in a comprehensive
	manner and apply the skills acquired in their chosen discipline.
PO2	Interpret scientific ideas and relate its interconnectedness to various
	fields in science
PO3	Evaluate scientific ideas critically, analyse problems, explore options
	for practical demonstrations, illustrate work plans, execute & draw
	inferences.
PO4	Explore and evaluate digital information and use it for knowledge
	Upgradation.
PO5	Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.

S.R.	Programme Specific Outcomes
PSO1	Understand, condense, visualize, analyse and interpret the data
	collected in daily walk of life.
PSO2	Understand the data generated in various scenarios of scientific,
	industrial, or social problems.
PSO3	Enhance knowledge of Statistical tools
PSO4	Pursue their higher education programs leading to post-graduate or
	doctoral degrees.

Subject	Course Outcomes (F.Y.B.Sc)
Descriptive	CO1 To compute various measures of central tendency,
Statistics I	dispersion, skewness and kurtosis.
	CO2 To analyse data pertaining to attributes and to interpret
	the results.

Discrete Probability and Probability Distributions I Descriptive Statistics II	 CO1 To distinguish between random and non-random experiments. CO2 To find the probabilities of events. CO3 To obtain a probability distribution of random variable (one or two dimensional) in the given situation. CO1 To compute the correlation coefficient for bivariate data and interpret it. CO2 To fit linear, quadratic and exponential curves to the bivariate data to investigate relation between two variables CO3 To compute and interpret various index numbers.
Discrete Probability and Probability Distributions II	CO1 To apply standard discrete probability distribution to different situations.CO2 To study properties of these distributions as well as interrelation between them.
Statistics Practical Paper 1 & 2	 CO1 To use various graphical and diagrammatic techniques and interpretation. CO2 To analyse data pertaining to discrete and continuous variables and to interpret the results. CO3 To compute various measures of central tendency, dispersion, skewness and kurtosis. CO4 To interpret summary statistics of computer output. CO5 To summarize and analyse the data using computer. CO6 To compute correlation coefficient, regression coefficients. CO7 To compute probabilities of bivariate distributions. CO9 To compute probabilities of bivariate distributions. CO10 To draw random samples from Poisson and binomial distributions.

B.Sc. (Microbiology)

S.R.	Programme Outcomes
PO1	Acquired knowledge and understanding of the microbiology concepts
	as applicable to diverse areas such as medical, industrial,
	environment, genetics, food etc.
PO2	Demonstrate key practical skills in working with microbes.
PO3	Use of good microbiological practices.
PO4	To acquire good lab Discipline to maintain sterile conditions.

S.R.	Programme Specific Outcomes
PSO1	The students are also trained in such a way that they develop critical
	thinking and problem solving as related to the microbiology.
PSO2	Students should have the appropriate skills of Microbiology so as to
	perform their duties as microbiologists.
PSO3	Students must be able to analyse the problems related to
	microbiology and come up with most suitable solutions.
PSO4	To develop good lab skills for culturing contamination free cultures.

Subject	Course Outcomes (F.Y.B.Sc)
Introduction	CO1 To study Amazing world of Microbiology.
to Microbial	CO2 To study types of Microorganism and their
World	differentiating characters.
	CO3 To study Beneficial and Harmful effects of
	microorganisms.
Basic	CO1 To study Microscopy related to microbiology and
Techniques	staining techniques.
in	CO2 To study different Sterilization and Disinfection
Microbiology	methods in microbiology.

Bacterial	CO1 To study Bacterial Cytology and its structure and
Cell and	functions.
Biochemistry	CO2 To study of biochemistry in microbiology.
Microbial	CO1 To study cultivation and maintenance methods related to
cultivation	microbes.
and growth	CO2 To study growth kinetics during microbial growth.
Microbiology	CO1 To study Safety measures and Good Laboratory
Practical	Practices in microbiology laboratory
Paper 1 & 2	CO2 To study mounting and staining of specimen.
	CO3 To study detail microscopy.
	CO4 To study Basic staining techniques: Monochrome
	staining, Negative staining, Gram staining of bacteria.
	CO5 To study Preparation of simple laboratory nutrient
	media.
	CO6 To study Special staining techniques.
	CO7 To study different isolation techniques in microbiology.

Subject	Course Outcomes (S.Y.B.Sc)
MB-231:	CO1 To acquire knowledge of principles underlying
Medical	establishment of pathogens in human body.
Microbiology	CO2 Gain Knowledge principles of chemotherapy of microbial
and	diseases and development of drug resistance among pathogens
Immunology	and strategies to mitigate
	CO3 Understand immune system structure, composition,
	function and comparison of different types of immunity, cell
	associated with, antigens and antibodies.
MB-232:	CO1 Understand the importance of enzymes in living cell and
Bacterial	distinguish between different classes of enzymes and their
Physiology and	function.
Fermentation	CO2 Get ability to illustrate and explains the various metabolic
Technology	pathways of the cell in particular prokaryotic.
	CO3 Understand the importance of microorganisms in
	Industry.
	CO4 To learn basic concepts of fermentations and its different
	types.

MB-241:	CO1 Get ability to summarize the basics of genetics e.g.,
Bacterial	DNA, RNA structure.
Genetics	CO2 Get ability to paraphrase the concept of gene.
	CO3 Understand the concept of central dogma of molecular
	biology and its mechanism.
	CO4 Understand the basic molecular processes like DNA
	replication, transcription and translation.
	CO5 Understand various types of mutations and their causes.
MB-242: Air,	CO1 Understand air, water and soil microflora and disease
Water and Soil	associated with them.
Microbiology	CO2 Master various techniques to measure the air and water
	microflora.
	CO3 Understand the important soil microorganisms and their
	role in agriculture.
	CO4 Understand how soil microorganisms helps in
	maintaining with elemental cycles in nature.
MB-233 and	CO1 Practical for the second-year students is kept more
MB-243	flexible, designed to evolve project themes on environment,
Practical Course	agriculture and pollution aspects e.g., Biochemical
based on theory	characterization of pathogenic bacteria, Bacteriological tests of
papers.	potability of water and bacterial genetics.

Subject	Course Outcomes (T.Y.B.Sc)
MB 351:	CO1 Understand the human anatomy, pathogens associated
Medical	with diseases.
Microbiology-	CO2 Acquire knowledge of principles underlying
I and MB 361:	establishment of pathogens in human body.
Medical	CO3 Comprehend of pathogenesis of specific pathogens
Microbiology-	causing microbial diseases.
Π	CO4 Assess epidemiological patterns of microbial disease
	transmission as various modes, intensity at local and global
	level.
	CO5 Gain Knowledge principles of chemotherapy of microbial
	diseases and development of drug resistance among pathogens
	and strategies to mitigate.
	CO6 Develop identification systems for microbial disease
	diagnosis, disease treatment and prevention measures.
MB-352	CO1 Understand immune system structure, composition,
Immunology- I	function and comparison of different types of immunity.

and MB-362 Immunology- II	CO2 Acquire knowledge about antigens, Recognition of pathogens; antigen processing and presentation; Immunity to infection and pathological consequences of immunodeficiencies. CO3 To learn the applications of Immunology in monoclonal antibodies, vaccines production and Immunotherapy. CO4 Understand abnormal working of Immune system in hypersensitivity, auto immune diseases, immune tolerance and transplantation immunology. CO5 To develop strategies for Diagnosis of diseases based on antigen and antibody reactions with emphasis on prevailing communicable diseases
MB 353 Enzymology and MB 363 Metabolism	CO1 To understand methods of active site determination, role of enzymes and its cofactors in microbial physiology. CO2 To learn to perform enzyme assay, purification and quantification of enzymes activity, enzyme kinetics in terms of initial, final velocity, mathematical expression of enzyme kinetic parameters. CO3To correlate regulation of metabolism at enzymatic levels and apply, methodology for commercial applications of enzymes CO4 To learn mechanisms of transport of solutes across the membrane CO5 To get acquainted with mechanism of biosynthesis and degradation of bio molecules CO6 To comprehend basic concept of autotrophic mode of metabolism of prokaryotes
MB 354	CO1 To exhibit a knowledge base in Genetics and Molecular
Genetics and MB 364 Molecular Biology	Biology CO2 To understand the central dogma of Molecular Biology CO3To construct genetic map of bacteria and fungi CO4 To get introduced to concept of recombination and bacteriophage Genetics CO5 To understand the concept cloning in bacteria CO6 To demonstrate the knowledge of common and advanced
MD 255	laboratory practices in Molecular Biology.
MB 355	CO1 To impart technical understanding of commercial
Fermentation Technology- I	fermentations. CO2 To apply classical, advanced strain improvement and
rechnology-1	CO2 TO appry classical, auvalieu sualli illipiovellielit allu

and MB 365	isolation techniques for fermentation processes.
Fermentation	CO3 To optimize and sterilize media used in fermentation
Technology- II	industry for commercially economical and efficient
reennoiogy n	fermentations.
	CO4 To recover the product using suitable methods and
	ensuring quality of the finished product by quality assurance
	tests.
	CO5 To acquaint fermentation economics, process patentability,
	process validation.
	CO6 To comprehend the large-scale productions of
	commercially significant fermentation products of classical and
	recent significance.
MB 356	CO1 To understand plant growth improvement with respect to
Agricultural	disease resistance, environment tolerance.
-	
Microbiology	CO2 To correlate stages of plant disease development,
	epidemiology, symptom-based classification, control methods.
	CO3 To understand the importance of microorganisms in
	sustainable agriculture, biotechnological application of bio
	films, edible vaccines.
	CO4 To correlate Soil Micro biome and Role of
	microorganisms in soil health
	CO5 To determine the use of Microorganisms as tools in plant
	genetic engineering.
MB 366: Food	
Microbiology	CO1 To describe food safety problems and solutions in India
linerooroogy	and global scale.
	CO2 Identify and classify types of microorganisms in food
	processing and compare their Characteristics and behaviour
	CO3 To learn food classification based on their perishability,
	intrinsic and extrinsic factors affecting the growth of microbes
	in foods, role of microorganisms in food fermentation.
	CO4 To acquire knowledge about food spoilage, food borne
	diseases, predisposition and preventive and control measures.
	CO5 To apply principles of sanitation, heat treatment,
	irradiation, modified atmosphere, antimicrobial preservatives
	and combination of method (hurdle concept) to control
	microbial growth with emphasis on HACCP guidelines.
Skilled Base	CO1 To impart the awareness of unseen and unexplored niche
Elective MB	of marine ecosystem of microbes.
Elective MD	or marme ecosystem or microbes.

3510 Marine	CO2 To acquire advances in the knowledge of marine microbes
Microbiology	and marine ecology.
	CO3 To learn the field research on marine processes and
	laboratory research on microorganisms.
	CO4 To comprehend the role of marine microbes in
	bioremediation and bioprospecting.
	CO5 To avail career opportunities in marine education, industry
	and research.
Skilled Base	CO1 To understand prospects of dairying at commercial
Elective MB	marketing.
3511 Dairy	CO2 To acquire skills of processing of milk and dairy products.
Microbiology	CO3 To assess quality control in dairy industry.
	CO4 To comprehend production of dairy products of
	commercial significance with emphasis to local and global
	market demand.
Skilled Base	CO1 To understand waste management and it practicable
Elective MB	applicability.
3610 Waste	CO2 To assess the magnitude and influence of hazardous
Management	content of waste, pollution of waters and waste water treatment
6	technologies.
	CO3 To learn the design and working of treatment plants and
	methods used for liquid and solid waste treatment.
	CO4 To impart the understanding of kinetics of biological
	systems used in waste treatment.
	CO5 To learn the standards of waste management and
	competent authorities involved at National and international
	level.
Skilled Base	CO1 To understand design, development and application of
Elective MB	Nanomaterials and their application in Nanodevices.
3611 Nano-	CO2 To learn fundamentals of nanotechnology as to Synthesis
biotechnology	and characterization techniques of nanoparticles.
	CO3 To acquire knowledge of applications of nanomaterials in
	different disciplines of human life.
	CO4 To compare the merits of using nanotechnology with
	existing technologies
Practical	Understand various techniques in clinical Microbiology,
Course I:	Immunohematology, Immunoprecipitation, Agglutination tests
Based on MB	etc.
357 and MB	
367:	
507.	

Diagnostic	
Microbiology	
and	
Immunology	
Practical	Understand various biochemical techniques like
Course II:	chromatography, colorimetric assay, centrifugation, DNA and
Based on	plasmid isolation, their quantification.
MB 358	
Enzymology	
and Genetics	
MB 368	
Metabolism	
and Molecular	
Biology	
Practical	Understand various techniques carried out in industries like
course-III:	fermentation, food and dairy. To learn about microorganisms
Based on MB	that are harmful and beneficial in agriculture.
359	
Fermentation	
Technology- I	
and	
Agricultural	
Microbiology,	
MB 369	
Fermentation	
Technology- II	
and Food	
Microbiology	